of colonies grown on solid medium. Alternatively, molecular biology techniques (for example, nucleic acid amplification) may be used.

TESTS

Virulent mycobacteria. Inject subcutaneously or intramuscularly into each of 6 guinea-pigs, each weighing 250-400 g and having received no treatment likely to interfere with the test, a quantity of the product to be examined equivalent to at least 1/25 of 1 human dose. Observe the animals for at least 42 days. At the end of this period, kill the guinea-pigs and examine by autopsy for signs of infection with tuberculosis, ignoring any minor reactions at the site of injection. Animals that die during the observation period are also examined for signs of tuberculosis. The product complies with the test if none of the guinea-pigs shows signs of tuberculosis and if not more than 1 animal dies during the observation period. If 2 animals die during this period and autopsy does not reveal signs of tuberculosis, repeat the test on 6 other guinea-pigs. The product complies with the test if not more than 1 animal dies during the 42 days following the injection and autopsy does not reveal any sign of tuberculosis.

Bacterial and fungal contamination. The reconstituted product complies with the test for sterility (2.6.1) except for the presence of mycobacteria.

Temperature stability. Maintain samples of the freeze-dried product at 37 °C for 4 weeks. Determine the number of viable units in the heated product and in unheated product as described below. The number of viable units in the heated product is within the limits approved for the particular product but in any case not less than 20 per cent of that in unheated product.

Water. Not more than the limit approved for the particular product, determined by a suitable method.

ASSAY

Determine the number of viable units in the reconstituted product by viable count on solid medium using a method suitable for the product to be examined or by a suitable validated biochemical method. The number is within the range stated on the label. Determine the number of viable units in the comparison control in parallel.

LABELLING

The label states:

- the minimum and the maximum number of viable units per dose in the reconstituted product,
- that the product must be protected from direct sunlight.

PRODUCTION

GENERAL PROVISIONS

BCG vaccine shall be produced by a staff consisting of healthy persons who do not work with other infectious agents; in particular they shall not work with virulent strains of *Mycobacterium tuberculosis*, nor shall they be exposed to a known risk of tuberculosis infection. Staff are examined periodically for tuberculosis. BCG vaccine is susceptible to sunlight: the procedures for the preparation of the vaccine shall be designed so that all cultures and vaccines are protected from direct sunlight and from ultraviolet light at all stages of manufacture, testing and storage.

Production of the vaccine is based on a seed-lot system. The production method shall have been shown to yield consistently BCG vaccines that induce adequate sensitivity to tuberculin in man, that have acceptable protective potency in animals and are safe. The vaccine is prepared from cultures which are derived from the master seed lot by as few subcultures as possible and in any case not more than 8 subcultures. During the course of these subcultures the preparation is not freeze-dried more than once.

If a bioluminescence test or other biochemical method is used instead of viable count, the method is validated against the viable count for each stage of the process at which it is used.

BACTERIAL SEED LOTS

The strain used to establish the master seed lot is chosen for and maintained to preserve its characteristics, its capacity to sensitise man to tuberculin and to protect animals against tuberculosis, and its relative absence of pathogenicity for man and laboratory animals. The strain used shall be identified by historical records that include information on its origin and subsequent manipulation.

A suitable batch of vaccine is prepared from the first working seed lot and is reserved for use as the comparison vaccine. When a new working seed lot is established, a suitable test for delayed hypersensitivity in guinea-pigs is carried out on a batch of vaccine prepared from the new working seed lot; the vaccine is shown to be not significantly different in activity from the comparison vaccine. Antimicrobial agent sensitivity testing is also carried out.

Only a working seed lot that complies with the following requirements may be used for propagation.

Identification. The bacteria in the working seed lot are identified as *Mycobacterium bovis* BCG using microbiological techniques, which may be supplemented by molecular biology techniques (for example, nucleic acid amplification and restriction-fragment-length polymorphism).

Bacterial and fungal contamination. Carry out the test for sterility (2.6.1), using 10 ml for each medium. The working seed lot complies with the test for sterility except for the presence of mycobacteria.

Virulent mycobacteria. Examine the working seed lot as prescribed under Tests, using 10 guinea-pigs.

PRODUCTION AND HARVEST

The bacteria are grown in a suitable medium for not more than 21 days by surface or submerged culture. The culture medium does not contain substances known to cause toxic or allergic reactions in humans or to cause the bacteria to become virulent for guinea-pigs. The culture is harvested and suspended in a sterile liquid medium that protects the viability of the vaccine as determined by a suitable method of viable count.

VACCINUM TUBERCULOSIS (BCG) CRYODESICCatum

DEFINITION

Freeze-dried BCG vaccine is a preparation of live bacteria derived from a culture of the bacillus of Calmette and Guérin (*Mycobacterium bovis* BCG) whose capacity to protect against tuberculosis has been established.
FINAL BULK VACCINE

The final bulk vaccine is prepared from a single harvest or by pooling a number of single harvests. A stabiliser may be added; if the stabiliser interferes with the determination of bacterial concentration in the final bulk vaccine, the determination is carried out before addition of the stabiliser.

Only final bulk vaccine that complies with the following requirements may be used in the preparation of the final lot.

- **Bacterial and fungal contamination.** Carry out the test for sterility (2.6.1), using 10 ml for each medium. The final bulk vaccine complies with the test for sterility except for the presence of mycobacteria.
- **Count of viable units.** Determine the number of viable units per millilitre by viable count on solid medium using a method suitable for the vaccine to be examined or by a suitable biochemical method. Carry out the test in parallel on a reference preparation of the same strain.
- **Bacterial concentration.** Determine the total bacterial concentration by a suitable method, either directly by determining the mass of the micro-organisms, or indirectly by an opacity method that has been calibrated in relation to the mass of the organisms; if the bacterial concentration is determined before addition of a stabiliser, the concentration in the final bulk vaccine is established by calculation. The total bacterial concentration is within the limits approved for the particular product.

The ratio of the count of viable units to the total bacterial concentration is not less than that approved for the particular product.

- **FINAL LOT**

The final bulk vaccine is distributed into sterile containers and freeze-dried to a moisture content favourable to the stability of the vaccine; the containers are closed either under vacuum or under an inert gas.

Except where the filled and closed containers are stored at a temperature of not more than 4 °C, and where the expiry date is not later than 4 years from the date of harvest.

Only a final lot that complies with the following requirements for count of viable units and with each of the requirements given below under Identification, Tests and Assay may be released for use. Provided the test for virulent mycobacteria has been carried out with satisfactory results on the final bulk vaccine, it may be omitted on the final lot. Provided the test for excessive dermal reactivity has been carried out with satisfactory results on the working seed lot and on 5 consecutive final lots produced from it, the test may be omitted on the final lot.

Count of viable units. Determine the number of viable units per millilitre of the reconstituted vaccine by viable count on solid medium using a method suitable for the vaccine to be examined or by a suitable biochemical method. The ratio of the count of viable units after freeze-drying to that before is not less than that approved for the particular product.

IDENTIFICATION

BCG vaccine is identified by microscopic examination of the bacilli in stained smears demonstrating their acid-fast property and by the characteristic appearance of colonies grown on solid medium. Alternatively, molecular biology techniques (for example nucleic acid amplification) may be used.

TESTS

- **Virulent mycobacteria.** Inject subcutaneously or intramuscularly into each of 6 guinea-pigs, each weighing 250-400 g and having received no treatment likely to interfere with the test, a quantity of vaccine equivalent to at least 50 human doses. Observe the animals for at least 42 days. At the end of this period, kill the guinea-pigs and examine by autopsy for signs of infection with tuberculosis, ignoring any minor reactions at the site of injection. Animals that die during the observation period are also examined for signs of tuberculosis. The vaccine complies with the test if none of the guinea-pigs shows signs of tuberculosis and if not more than 1 animal dies during the observation period. If 2 animals die during this period and autopsy does not reveal signs of tuberculosis repeat the test on 6 other guinea-pigs. The vaccine complies with the test if not more than 1 animal dies during the 42 days following the injection and autopsy does not reveal any sign of tuberculosis.

- **Bacterial and fungal contamination.** The reconstituted vaccine complies with the test for sterility (2.6.1) except for the presence of mycobacteria.

- **Excessive dermal reactivity.** Use 6 healthy, white or pale-coloured guinea-pigs, each weighing not less than 250 g and having received no treatment likely to interfere with the test. Inject intradermally into each guinea-pig, according to a randomised plan, 0.1 ml of the reconstituted vaccine and of 2 tenfold serial dilutions of the vaccine and identical doses of the comparison vaccine. Observe the lesions formed at the site of the injection for 4 weeks. The vaccine complies with the test if the reaction it produces is not markedly different from that produced by the comparison vaccine.

- **Temperature stability.** Maintain samples of the freeze-dried vaccine at 37 °C for 4 weeks. Determine the number of viable units in the heated vaccine and in unheated vaccine as described below. The number of viable units in the heated vaccine is not less than 20 per cent that in unheated vaccine.

- **Water.** Not more than the limit approved for the particular product, determined by a suitable method.

ASSAY

Determine the number of viable units in the reconstituted vaccine by viable count on solid medium using a method suitable for the vaccine to be examined or by a suitable validated biochemical method. The number is within the range stated on the label. Determine the number of viable units in the comparison vaccine in parallel.

LABELLING

The label states:
- the minimum and maximum number of viable units per millilitre in the reconstituted vaccine,
- that the vaccine must be protected from direct sunlight.

01/2005:0154

CHOLERA VACCINE

Vaccinum cholerae

DEFINITION

Cholera vaccine is a homogeneous suspension of a suitable strain or strains of *Vibrio cholerae* containing not less than 8 × 10⁹ bacteria in each human dose. The human dose does not exceed 1.0 ml.